Bootstrapping GMM estimators for time series

نویسندگان

  • Atsushi Inoue
  • Mototsugu Shintani
چکیده

This paper considers the bootstrap for the GMM estimator of overidentified linear models when autocorrelation structures of moment functions are unknown. When moment functions are uncorrelated after finite lags, Hall and Horowitz, [1996. Bootstrap critical values for tests based on generalized method of moments estimators. Econometrica 64, 891–916] showed that errors in the rejection probabilities of the bootstrap tests are oðT Þ. However, this rate cannot be obtained with the HAC covariance matrix estimator since it converges at a nonparametric rate. By incorporating the HAC covariance matrix estimator in the Edgeworth expansion of the distribution, we show that the bootstrap provides asymptotic refinements when the characteristic exponent of the kernel function is greater than two. r 2005 Elsevier B.V. All rights reserved. JEL classification: C12; C22; C32

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Weighted GMM Estimators for Linear Time Series Models

This paper analyzes the higher order asymptotic properties of Generalized Method of Moments (GMM) estimators for linear time series models using many lags as instruments. A data dependent moment selection method based on minimizing the approximate mean squared error is developed. In addition, a new version of the GMM estimator based on kernel weighted moment conditions is proposed. It is shown ...

متن کامل

Quasi Maximum-Likelihood Estimation of Dynamic Panel Data Models

This paper establishes the almost sure convergence and asymptotic normality of levels and differenced quasi maximum-likelihood (QML) estimators of dynamic panel data models. The QML estimators are robust with respect to initial conditions, conditional and time-series heteroskedasticity, and misspecification of the log-likelihood. The paper also provides an ECME algorithm for calculating levels ...

متن کامل

Asymptotic Refinements of a Misspecification-Robust Bootstrap for Generalized Method of Moments Estimators

I propose a nonparametric iid bootstrap that achieves asymptotic refinements for t tests and confidence intervals based on the generalized method of moments (GMM) estimators even when the model is misspecified. In addition, my bootstrap does not require recentering the bootstrap moment function, which has been considered as a critical procedure for bootstrapping GMM. The elimination of the rece...

متن کامل

Exact simulation of Gaussian Time Series from Nonparametric Spectral Estimates with Application to Bootstrapping

The circulant embedding method for generating statistically exact simulations of time series from certain Gaussian distributed stationary processes is attractive because of its advantage in computational speed over a competitive method based upon the modified Cholesky decomposition. We demonstrate that the circulant embedding method can be used to generate simulations from stationary processes ...

متن کامل

A quasi-di!erencing approach to dynamic modelling from a time series of independent cross-sections

We motivate and describe a GMM method of estimating linear dynamic models from a time series of independent cross-sections. This involves subjecting the model to a quasi-di!erencing transformation across pairs of individuals that belong to the same group. Desirable features of the model include the fact that: (i) no aggregation is involved, (ii) dynamic response parameters can vary across group...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006